Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
2.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484558

RESUMO

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Bleomicina , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Citocinas , Doxorrubicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral
3.
Int J Cancer ; 154(12): 2176-2188, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346928

RESUMO

Conventional type 1 dendritic cells (cDC1s) play a crucial role in antitumor immunity through the induction and activation of tumor-specific CD8+ cytotoxic T cells (CTLs). The chemokine XCL1 is a major chemotactic factor for cDC1s and its receptor XCR1 is selectively expressed on cDC1s. Here, we investigated the effect of intratumoral delivery of a highly active form of murine XCL1 (mXCL1-V21C/A59C) on cDC1-mediated antitumor immunity using a hydrophilic gel patch. The hydrophilic gel patch containing mXCL1-V21C/A59C increased cDC1 accumulation in the tumor masses and promoted their migration to the regional lymph nodes, resulting in enhanced induction of tumor-specific CTLs. Tumor-infiltrating cDC1s not only expressed XCR1 but also produced CXCL9, a ligand for CXCR3 which is highly expressed on CTLs and NK cells. Consequently, CTLs and NK cells were increased in the tumor masses of mice treated with mXCL1-V21C/A59C, while immunosuppressive cells such as monocyte-derived suppressive cells and regulatory T cells were decreased. We also confirmed that anti-CXCL9 treatment decreased the tumor infiltration of CTLs. The intratumoral delivery of mXCL1-V21C/A59C significantly decreased tumor growth and prolonged survival in E.G7-OVA and B16-F10 tumor-bearing mice. Furthermore, the antitumor effect of mXCL1-V21CA59C was enhanced in combination with anti-programmed cell death protein 1 treatment. Finally, using The Cancer Genome Atlas database, we found that XCL1 expression was positively correlated with tumor-infiltrating cDC1s and a better prognosis in melanoma patients. Collectively, our findings provide a novel therapeutic approach to enhance tumor-specific CTL responses through the selective recruitment of CXCL9-expressing cDC1s into the tumor masses.


Assuntos
Quimiocinas C , Melanoma , Humanos , Camundongos , Animais , Linfócitos T Citotóxicos , Células Matadoras Naturais , Melanoma/metabolismo , Células Dendríticas , Linfócitos T CD8-Positivos , Quimiocina CXCL9/metabolismo , Quimiocinas C/genética
4.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342608

RESUMO

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Fenótipo
5.
J Biol Chem ; 299(10): 105230, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689116

RESUMO

Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon , Macrófagos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Macrófagos/metabolismo , Transdução de Sinais/genética , Células RAW 264.7 , Animais , Camundongos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Simulação por Computador , Análise de Célula Única , Adjuvantes Imunológicos/farmacologia
6.
Science ; 381(6657): 515-524, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535729

RESUMO

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Assuntos
Polaridade Celular , Quimiocina CXCL9 , Neoplasias de Cabeça e Pescoço , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análise , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Osteopontina/análise , Osteopontina/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Polaridade Celular/imunologia
7.
Med Sci (Basel) ; 11(2)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37218983

RESUMO

Chemokines are a group of cytokines involved in the mobilization of leukocytes, which play a role in host defense and a variety of pathological conditions, including cancer. Interferon (IFN)-inducible chemokines C-X-C motif ligand 9 (CXCL), CXCL10, and CXCL11 are anti-tumor chemokines; however, the differential anti-tumor effects of IFN-inducible chemokines are not completely understood. In this study, we investigated the anti-tumor effects of IFN-inducible chemokines by transferring chemokine expression vectors into a mouse squamous cell carcinoma cell line, SCCVII, to generate a cell line stably expressing chemokines and transplanted it into nude mice. The results showed that CXCL9- and CXCL11-expressing cells markedly inhibited tumor growth, whereas CXCL10-expressing cells did not inhibit growth. The NH2-terminal amino acid sequence of mouse CXCL10 contains a cleavage sequence by dipeptidyl peptidase 4 (DPP4), an enzyme that cleaves the peptide chain of chemokines. IHC staining indicated DPP4 expression in the stromal tissue, suggesting CXCL10 inactivation. These results suggest that the anti-tumor effects of IFN-inducible chemokines are affected by the expression of chemokine-cleaving enzymes in tumor tissues.


Assuntos
Carcinoma de Células Escamosas , Quimiocina CXCL10 , Quimiocina CXCL11 , Quimiocina CXCL9 , Animais , Camundongos , Linhagem Celular , Quimiocina CXCL10/metabolismo , Dipeptidil Peptidase 4 , Interferon gama/farmacologia , Camundongos Nus , Quimiocina CXCL9/metabolismo , Quimiocina CXCL11/metabolismo
8.
Food Chem Toxicol ; 176: 113783, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059382

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) exposure in food is closely associated with the occurrence and development of breast cancer, which may attribute to altered immunotoxicity and immune regulation. Currently, cancer immunotherapy aims to promote tumor-specific T cell responses, especially CD4+T helper cells (Th) for anti-tumor immunity. The histone deacetylase inhibitors (HDACis) are found to exert an anti-tumor effect by reshaping the tumor immune microenvironment, but the immune regulatory mechanism of HDACis in PAHs-induced breast tumor remains elusive. Here, using established breast cancer models induced by 7,12-dimethylbenz[a]anthracene (DMBA), a potent carcinogenic agent of PAH, the novel HDACi, 2-hexyl-4-pentylene acid (HPTA) exhibited anti-tumor effect by activating T lymphocytes immune function. HPTA recruited CXCR3+CD4+T cells into chemokines CXCL9/10-enriched tumor sites, and the increased secretion of CXCL9/10 was regulated by the NF-κB-mediated pathway. Furthermore, HPTA promoted Th1 differentiation and assisted cytotoxic CD8+T cells in the elimination of breast cancer cells. These findings support the proposition of HPTA as a potential therapeutic in the treatment of PAHs-induced carcinogenicity.


Assuntos
Neoplasias da Mama , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Feminino , Linfócitos T , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinógenos/metabolismo , Microambiente Tumoral , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/farmacologia , Receptores CXCR3/metabolismo
9.
J Invest Dermatol ; 143(7): 1138-1146.e12, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36708947

RESUMO

Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.


Assuntos
Dermatite , Esclerodermia Localizada , Humanos , Animais , Camundongos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Regulação para Cima , Ligantes , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Fibrose , Inflamação , Fibroblastos/metabolismo , Bleomicina/toxicidade , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
10.
Rheumatology (Oxford) ; 62(7): 2594-2600, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36342195

RESUMO

OBJECTIVE: Oligoarticular JIA disease progression and outcomes are variable. Our objective is to detect protein markers that would allow for earlier intervention to potentially halt disease progression. In this retrospective study of serial SF samples, elevated expression of CCL24, CXCL9 and CXCL10 was linked to the eventual need for advanced medications. METHODS: Serial SF samples were selected from patients with persistent and extended oligoarticular JIA. The samples were separated into two groups: those who did and did not receive advanced medications throughout their disease course. Protein antibody arrays and Luminex assays were performed to determine changes in protein expression. RESULTS: CCL24, CXCL9 and CXCL10 expression levels were significantly higher in patients who eventually required advanced treatment than in those who did not. The expression levels of CCL24 and CXCL9 were consistently elevated in paired samples of those who later received advanced medications. In the persistent oligoarticular JIA group, CXCL10 levels remained elevated over time in those who required advanced treatment. Conversely, CCL24 levels decreased in patients who did not require advanced treatment. In the extended samples, the levels of CCL24 and CXCL10 expression increased significantly over time in the patients who ultimately required advanced treatment. CONCLUSION: In patients with oligoarticular JIA, regardless of disease onset and progression, the consistent elevation of any or all three markers, the CCL24, CXCL9 and CXCL10 in SFs was associated with the future use of advanced therapy, which could be reflective of disease severity.


Assuntos
Artrite Juvenil , Líquido Sinovial , Humanos , Líquido Sinovial/metabolismo , Artrite Juvenil/diagnóstico , Estudos Retrospectivos , Progressão da Doença , Quimiocina CXCL9/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CCL24/metabolismo
11.
Cancer Immunol Immunother ; 72(6): 1479-1492, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472587

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment options. Notably, immunotherapy is a potential therapeutic approach for TNBC. This study performed single-cell RNA sequencing on TNBC and found highly expressed CXCL9 in M1 macrophages. An intercellular communication network was found between M1 macrophages and M2 macrophages, and M1 macrophages could differentiate into M2 macrophages over time. Meanwhile, CXCL9 expression started to decrease in association with cell differentiation from M1 macrophages to M2 macrophages. Additionally, the M1 macrophage had strong connections to the M2 macrophage in the MHC-II signaling network. Through GSVA analysis, the MHC-II pathway activity of the M1 macrophages was significantly stronger than that of the M2 macrophages. Furthermore, CXCL9 was enriched in the MHC-II signaling pathway. CXCL9 was significantly enriched in the JAK/STAT signaling pathway. Western blot revealed that CXCL9 overexpression promotes JAK1/STAT2 expression in MDA-MB-231 cells. These findings indicate that CXCL9 is a potential clinical biomarker of prognosis and immunotherapy efficacy for TNBC patients. Also, it stimulates JAK/STAT activity, which in turn modifies the tumor microenvironment.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Transdução de Sinais/genética , Janus Quinases/metabolismo , Microambiente Tumoral , Fatores de Transcrição STAT/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL9/metabolismo
12.
Iran J Immunol ; 19(3): 311-320, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190384

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emergent viral disease in which the host inflammatory response modulates the clinical outcome. Severe outcomes are associated with an exacerbation of inflammation in which chemokines play an important role as the attractants of immune cells to the tissues. OBJECTIVE: To evaluate the relationship of the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10 with COVID-19 severity and outcomes in Mexican patients. METHODS: We analyzed the serum levels of IL-8, RANTES, MIG, MCP-1 and IP-10 in 148 COVID-19 hospitalized patients classified as mild (n=20), severe (n=61), and critical (n=67), as well as in healthy individuals (n=10), by flow cytometry bead array assay. RESULTS: Chemokine levels were higher in patients than in the healthy individuals, but only MIG, MCP-1, and IP-10 increased according to the disease severity, showing the highest levels in the critical group. MIG, MCP-1, and IP-10 levels were also higher in COVID-19 patients with comorbidities such as renal disease, type 2 diabetes, and hypertension. Moreover, elevated MIG levels seem to be related to organic failure/shock, and an increased risk of death. CONCLUSIONS: Our results suggest that the increased levels of MCP-1, IP-10, and especially MIG might be useful in predicting severe COVID-19 outcomes and could be promising therapeutic targets.


Assuntos
COVID-19 , Quimiocina CXCL9 , COVID-19/mortalidade , Quimiocina CCL5 , Quimiocina CXCL10 , Quimiocina CXCL9/metabolismo , Humanos , Interleucina-8 , México
13.
J Med Chem ; 65(17): 11513-11532, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35947786

RESUMO

The chemokine receptor CXCR3 is a seven-transmembrane G-protein-coupled receptor (GPCR) involved in various pathologies, in particular autoimmune diseases. It is activated by the three chemokine ligands CXCL9, CXCL10, and CXCL11 and enables the recruitment of immune cell subsets leading to damage of inflamed tissues. Starting from a high-throughput screening hit, we describe the iterative optimization of a chemical series culminating in the discovery of the selective CXCR3 antagonist ACT-660602 (9j). The careful structural modifications during the lead optimization phase led to a compound with high biological potency in inhibiting cell migration together with improvements of the metabolic stability and hERG issue. In a LPS-induced lung inflammation model in mice, ACT-660602 led to significantly reduced recruitment of the CXCR3+ CD8+ T cell in the bronchoalveolar lavage compartment when administered orally at a dose of 30 mg/kg.


Assuntos
Doenças Autoimunes , Quimiocina CXCL10 , Animais , Doenças Autoimunes/tratamento farmacológico , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL9/metabolismo , Ligantes , Camundongos , Receptores CXCR3/metabolismo
14.
Med Microbiol Immunol ; 211(4): 211-218, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35819523

RESUMO

Schistosoma mansoni infections, particularly egg antigens, induce Th2-dominant granulomatous responses accompanied by remarkable immunoregulatory mechanisms that avoid intense fibrosis. Interleukin (IL)-33 is a cytokine that stimulates the early activation of Th2 responses, and its soluble ST2 receptor (sST2) avoids granulomatous response, as well as CXCL9 and CXCL10 chemokines that have antifibrotic activity. However, in schistosomiasis, these molecules have not been suitably studied. Therefore, this study aimed to measure IL-33 and sST2 RNA, cytokines, and chemokines in peripheral blood cultures from individuals living in schistosomiasis-endemic areas. Peripheral blood cells from individuals with S. mansoni (n = 34) and non-infected individuals (n = 31) were cultured under mitogen stimulation. Supernatant chemokines and cytokines were evaluated using a cytometric bead array, and IL-33 and sST2 mRNA expression was measured using qPCR. Infected individuals showed higher levels of CXCL8, CXCL9, CXCL10, IFN-γ, TNF-α, IL-6, IL-2, IL-4, and IL-10; there was a lower expression of IL-33 mRNA and similar expression of sST2mRNA in infected than non-infected individuals. In conclusion, for the first time, we demonstrated lower IL-33mRNA expression and high levels of the antifibrotic chemokines CXCL9 and CXCL10 in schistosomiasis mansoni, which could control exacerbations of the disease in individuals from endemic areas.


Assuntos
Esquistossomose mansoni , Esquistossomose , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-33/metabolismo , Leucócitos Mononucleares , RNA Mensageiro , Esquistossomose/metabolismo , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/metabolismo
15.
Innate Immun ; 28(5): 155-163, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35548957

RESUMO

Th17 cells represent important immune cells. Ursolic acid (UA) can regulate immune cell activities. This study was aimed to explore the effects of UA on Th17 cell differentiation and Schwann cell(SCs)-mediated migration and the potential mechanism. Naïve CD4+ T cells were isolated from rat peripheral blood, induced for Th17 cell differentiation, and treated with UA. The proportion of Th17 cells was detected by flow cytometry assay. SCs were co-cultured with Th17 cells. Th17 cell migration was detected by Transwell assay. The molecule expression was determined by Western blot and qRT-PCR. UA inhibited the Th17 cell differentiation and suppressed the STAT3/RORγt pathway. STAT3 overexpression up-regulated p-STAT3 and RORγt expression and promoted Th17 cell differentiation under the UA treatment. In LPS- and IFN-γ-stimulated-SCs, UA suppressed the expression of chemokines CXCL9/10, but had no significant effect of CCL20 expression. The expression CXCL9/10 receptor CXCR3 was higher in Th17 cells than that in Treg cells, while the expression CCL20 receptor CCR6 was lower in Th17 cells than that in Treg cells. UA, anti-CXCR3, and anti-CCR6 treatment inhibited SCs-mediated Th17 cell migration, and anti-CXCR3 exerted stronger inhibitory effect than Anti-CCR6. UA inhibited Th17 cell differentiation through STAT3/RORγt pathway and suppressed Th17 cell migration through down-regulating CXCL9/10 expression in SCs.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fator de Transcrição STAT3 , Células de Schwann , Células Th17 , Triterpenos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL10/biossíntese , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/biossíntese , Quimiocina CXCL9/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Triterpenos/farmacologia
16.
Immunol Cell Biol ; 100(5): 312-322, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233830

RESUMO

The chemokine receptor CXCR3 is expressed on immune cells to co-ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro-inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady-state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL11/metabolismo , Viroses , Animais , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Imunidade , Ligantes , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Immunol ; 12: 770852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868029

RESUMO

Autoimmune thyroiditis (AIT) is the most prevalent autoimmune endocrine disease, with a higher incidence in women than in men. Immunological abnormalities may lead to the impairment of ovarian folliculogenesis; however, whether the presence of AIT affects immunological microenvironment in follicles remains controversial. We performed a cross-sectional study including 122 patients, aged 20-40 years, who underwent IVF/ICSI treatment owing to isolated male or tube factor infertility. Patients were divided into AIT and control groups according to clinical presentation, thyroid function, and thyroid autoantibody measurements. Follicular fluid was collected and the distribution of cytokines/chemokines in follicular fluid was measured by flow cytometry using multiplex bead assays between the two groups. Based on differences in levels of intrafollicular chemokines and cytokines between the AIT and control groups, the relevant inflammatory cascade was further demonstrated. Among the 12 chemokines analyzed, three (CXCL9, CXCL10, and CXCL11) showed significantly elevated levels in the follicular fluid of patients with AIT. Among the 11 cytokines detected, compared with those in the control group, significantly higher levels of IFNγ were observed in patients with AIT. IFNγ dose-dependently stimulated the expression and secretion of CXCL9/10/11 in cultured primary granulosa cells. The percentage of CXCR3+ T lymphocytes was significantly elevated in the follicular microenvironment of patients with AIT. We concluded that the IFNγ-CXCL9/10/11-CXCR3+ T lymphocyte inflammatory cascade is activated in the follicular microenvironment of patients with AIT. These findings indicate that a considerable immune imbalance occurred in the follicular microenvironment of patients with AIT.


Assuntos
Microambiente Celular/imunologia , Citocinas/imunologia , Líquido Folicular/imunologia , Tireoidite Autoimune/imunologia , Adulto , Células Cultivadas , Microambiente Celular/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Fertilização In Vitro , Citometria de Fluxo , Líquido Folicular/metabolismo , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Injeções de Esperma Intracitoplásmicas , Tireoidite Autoimune/genética , Tireoidite Autoimune/metabolismo
18.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884512

RESUMO

Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid ß-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL9/metabolismo , Modelos Animais de Doenças , Doença de Gaucher/imunologia , Glucosilceramidase/fisiologia , Inflamação/imunologia , Receptores CXCR3/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Quimiocina CXCL9/genética , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
19.
Biochem Biophys Res Commun ; 584: 87-94, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34775285

RESUMO

Umbilical cord mesenchymal stem cells (UC-MSCs) transplantation has become a promising treatment for liver fibrosis. However, UC-MSCs have limited anti-fibrosis ability, and their homing ability of UC-MSCs to the injured liver seems to be poor. In our study, we aimed to determine if the CXCL9-overexpressing UC-MSCs could have synergistic anti-fibrosis effects and whether it can promote the homing ability of UC-MSCs. Overexpression of CXCL9 in UC-MSCs (CXCL9-UC-MSCs) was attained by transfecting the lenti-CXCL9-mCherry to naive UC-MSCs. The therapeutic effect of transducted CXCL9-UC-MSCs on both repairing of hepatic fibrosis and target homing were evaluated by comparing with the control of UC-MSCs transfected with empty lenti-mCherry vector. The results revealed that the liver function of CXCL9-UC-MSCs treated group was significantly improved when compared with that of control UC-MSCs (P < 0.05), and the histopathology indicated an obvious decrease of the collagen fiber content and significant disappearing of pseudo-lobules with basically normal morphology of hepatic lobules. Furthermore, liver frozen sections confirmed that CXCL9-UC-MSCs have significantly stronger chemotaxis and stable persistence in the injured liver tissues. In summary, overexpression of CXCL9 could improve the efficacy of UC-MSCs therapy for liver fibrosis repairing on account of an enhanced ability of UC-MSCs in homing to and staying in the injured sites of liver fibrosis in rat models.


Assuntos
Quimiocina CXCL9/genética , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Quimiocina CXCL9/metabolismo , Modelos Animais de Doenças , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Transfecção , Transplante Heterólogo , Resultado do Tratamento
20.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769100

RESUMO

After successful surgeries for patients with rhegmatogenous retinal detachment, the most common cause of retinal redetachment is proliferative vitreoretinopathy (PVR), which causes severe vision impairment and even blindness worldwide. Until now, the major treatment for PVR is surgical removal of the epiretinal membrane, while effective treatment to prevent PVR is still unavailable. Therefore, we investigated the potential of doxycycline, an antibiotic in the tetracycline class, to treat PVR using a mouse model. We used the human retinal pigment epithelial cell line, ARPE-19, for in vitro and in vivo studies to test doxycycline for PVR treatment. We found that doxycycline suppressed the migration, proliferation, and contraction of ARPE-19 cells with reduced p38 MAPK activation and total MMP activity. Intravitreal doxycycline and topical tetracycline treatment significantly ameliorated the PVR severity induced by ARPE-19 cells in mice. PVR increased the expression of MMP-9 and IL-4 and p38 MAPK phosphorylation and modestly decreased IL-10. These effects were reversed by doxycycline and tetracycline treatment in the mouse retina. These results suggest that doxycycline will be a potential treatment for PVR in the future.


Assuntos
Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Vitreorretinopatia Proliferativa/tratamento farmacológico , Animais , Linhagem Celular , Quimiocina CXCL9/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Injeções Intravítreas , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/enzimologia , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...